NEWLabel Studio 1.20.0 Now Available: Spectrograms, Time Series Sync, and more!
Back to integrations

Text Classification with Scikit-learn

Overview

Scikit-learn is an open-source Python module with several built-in data analysis and prediction tools. This module is a free software machine learning library that can be integrated with the Label Studio machine learning backend to evaluate predictive tools for automated labeling.

The Label Studio machine learning backend integrates with Scikit-learn to leverage its full range of predictive tools for automated labeling.

Benefits

Integrating Scikit-learn with Label Studio provides the following benefits:

  • Broad Prediction Library: Scikit-learn supports various predictive models, including classification, regression, clustering, and dimensionality reduction algorithms.
  • Preprocessing Tools: Scikit-learn includes a wide range of data-processing tools, allowing you to prepare data for annotation and classification.

Related Integrations

Ultralytics YOLO

Computer vision models

Grounding DINO

Text-Driven Object Detection Model

Mistral AI

High-performance open-weight language models.

Baal

Library to enable Bayesian active learning