Text classification with Scikit-Learn
This tutorial explains the basics of using a Machine Learning (ML) backend with Label Studio using a simple text classification model powered by the scikit-learn library.
Follow this tutorial with a text classification project, where the labeling interface uses the <Choices>
control tag with the <Text>
object tag. The following is an example label config that you can use:
<View>
<Text name="news" value="$text"/>
<Choices name="topic" toName="news">
<Choice value="Politics"/>
<Choice value="Technology"/>
<Choice value="Sport"/>
<Choice value="Weather"/>
</Choices>
</View>
Create a model script
If you create an ML backend using Label Studio’s ML SDK, make sure your ML backend script does the following:
- Inherit the created model class from
label_studio_ml.LabelStudioMLBase
- Override the 2 methods:
predict()
, which takes input tasks and outputs predictions in the Label Studio JSON format.fit()
, which receives annotations iterable and returns a dictionary with created links and resources. This dictionary is used later to load models with theself.train_output
field.
Create a file model.py
with the following content:
import pickle
import os
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import make_pipeline
from label_studio_ml.model import LabelStudioMLBase
class SimpleTextClassifier(LabelStudioMLBase):
def __init__(self, **kwargs):
# don't forget to initialize base class...
super(SimpleTextClassifier, self).__init__(**kwargs)
# then collect all keys from config which will be used to extract data from task and to form prediction
# Parsed label config contains only one output of <Choices> type
assert len(self.parsed_label_config) == 1
self.from_name, self.info = list(self.parsed_label_config.items())[0]
assert self.info['type'] == 'Choices'
# the model has only one textual input
assert len(self.info['to_name']) == 1
assert len(self.info['inputs']) == 1
assert self.info['inputs'][0]['type'] == 'Text'
self.to_name = self.info['to_name'][0]
self.value = self.info['inputs'][0]['value']
if not self.train_output:
# If there is no trainings, define cold-started the simple TF-IDF text classifier
self.reset_model()
# This is an array of <Choice> labels
self.labels = self.info['labels']
# make some dummy initialization
self.model.fit(X=self.labels, y=list(range(len(self.labels))))
print('Initialized with from_name={from_name}, to_name={to_name}, labels={labels}'.format(
from_name=self.from_name, to_name=self.to_name, labels=str(self.labels)
))
else:
# otherwise load the model from the latest training results
self.model_file = self.train_output['model_file']
with open(self.model_file, mode='rb') as f:
self.model = pickle.load(f)
# and use the labels from training outputs
self.labels = self.train_output['labels']
print('Loaded from train output with from_name={from_name}, to_name={to_name}, labels={labels}'.format(
from_name=self.from_name, to_name=self.to_name, labels=str(self.labels)
))
def reset_model(self):
self.model = make_pipeline(TfidfVectorizer(ngram_range=(1, 3)), LogisticRegression(C=10, verbose=True))
def predict(self, tasks, **kwargs):
# collect input texts
input_texts = []
for task in tasks:
input_texts.append(task['data'][self.value])
# get model predictions
probabilities = self.model.predict_proba(input_texts)
predicted_label_indices = np.argmax(probabilities, axis=1)
predicted_scores = probabilities[np.arange(len(predicted_label_indices)), predicted_label_indices]
predictions = []
for idx, score in zip(predicted_label_indices, predicted_scores):
predicted_label = self.labels[idx]
# prediction result for the single task
result = [{
'from_name': self.from_name,
'to_name': self.to_name,
'type': 'choices',
'value': {'choices': [predicted_label]}
}]
# expand predictions with their scores for all tasks
predictions.append({'result': result, 'score': score})
return predictions
def fit(self, completions, workdir=None, **kwargs):
input_texts = []
output_labels, output_labels_idx = [], []
label2idx = {l: i for i, l in enumerate(self.labels)}
for completion in completions:
# get input text from task data
print(completion)
if completion['annotations'][0].get('skipped') or completion['annotations'][0].get('was_cancelled'):
continue
input_text = completion['data'][self.value]
input_texts.append(input_text)
# get an annotation
output_label = completion['annotations'][0]['result'][0]['value']['choices'][0]
output_labels.append(output_label)
output_label_idx = label2idx[output_label]
output_labels_idx.append(output_label_idx)
new_labels = set(output_labels)
if len(new_labels) != len(self.labels):
self.labels = list(sorted(new_labels))
print('Label set has been changed:' + str(self.labels))
label2idx = {l: i for i, l in enumerate(self.labels)}
output_labels_idx = [label2idx[label] for label in output_labels]
# train the model
self.reset_model()
self.model.fit(input_texts, output_labels_idx)
# save output resources
model_file = os.path.join(workdir, 'model.pkl')
with open(model_file, mode='wb') as fout:
pickle.dump(self.model, fout)
train_output = {
'labels': self.labels,
'model_file': model_file
}
return train_output
Create ML backend configs & scripts
Label Studio can automatically create all necessary configs and scripts needed to run ML backend from your newly created model.
Call your ML backend my_backend
and from the command line, initialize the ML backend directory ./my_backend
:
label-studio-ml init my_backend
The last command takes your script ./model.py
and creates an ./my_backend
directory at the same level, copying the configs and scripts needed to launch the ML backend in either development or production modes.
note
You can specify different location for your model script, for example: label-studio-ml init my_backend --script /path/to/my/script.py
.
Launch ML backend server
Development mode
In development mode, training and inference are done in a single process, therefore the server doesn’t respond to incoming prediction requests while the model trains.
To launch ML backend server in a Flask development mode, run the following from the command line:
label-studio-ml start my_backend
The server started on http://localhost:9090
and outputs logs in console.
Production mode
Production mode is powered by a Redis server and RQ jobs that take care of background training processes. This means that you can start training your model and continue making requests for predictions from the current model state. After the model finishes the training process, the new model version updates automatically.
For production mode, please make sure you have Docker and docker-compose installed on your system. Then run the following from the command line:
cd my_backend/
docker-compose up
You can explore runtime logs in my_backend/logs/uwsgi.log
and RQ training logs in my_backend/logs/rq.log
Using ML backend with Label Studio
Initialize and start a new Label Studio project connecting to the running ML backend:
label-studio start my_project --init --ml-backends http://localhost:9090
Getting predictions
You should see model predictions in a labeling interface. See Set up machine learning with Label Studio.
Model training
Trigger model training manually by pressing the Start training
button the Machine Learning page of the project settings, or using an API call:
curl -X POST http://localhost:8080/api/models/train