templates
- Template Gallery
- Get Started with Templates
Computer Vision
- Semantic Segmentation with Polygons
- Semantic Segmentation with Masks
- Object Detection with Bounding Boxes
- Keypoint Labeling
- Image Captioning
- Optical Character Recognition (OCR)
- Image Classification
- Visual Question Answering
- Object Detection with Ellipses
- Multi-Image Classification
- Multi-page Document Annotation
- Inventory Tracking
- Visual Genome
Natural Language Processing
- Question Answering
- Sentiment Analysis Text Classification
- Named Entity Recognition
- Taxonomy
- Relation Extraction
- Text Summarization
- Machine Translation
Audio/Speech Processing
- Automatic Speech Recognition
- Sound Event Detection
- Automatic Speech Recognition using Segments
- Signal Quality Detection
- Speaker Diarization
- Dialogue Analysis
- Intent Classification
- Audio Classification
- Audio Classification with Segments
- Voice Activity Detection
Conversational AI
- Response Generation
- Response Selection
- Coreference Resolution and Entity Linking
- Slot Filling and Intent Classification
Ranking and Scoring
- Pairwise Regression
- Document Retrieval
- Pairwise Classification
- Content-based Image Retrieval
- Website Rating
- ASR Hypotheses Selection
- Text-to-Image Generation
- Search Page Ranking
Structured Data Parsing
- Freeform Metadata
- PDF Classification
- Tabular Data
- HTML Entity Recognition
- HTML Classification
Time Series Analysis
- Time Series Forecasting
- Change Point Detection
- Activity Recognition
- Signal Quality
- Outliers and Anomaly Detection
- Time Series Classification
- Time Series Labeling
Videos
- Video Classification
- Video Timeline Segmentation
- Video Object Detection and Tracking
Template Galleries
- Template Gallery - Computer Vision
- Template Gallery - Natural Language Processing
- Template Gallery - Audio/Speech Processing
- Template Gallery - Conversational AI
- Template Gallery - Ranking & Scoring
- Template Gallery - Structured Data Parsing
- Template Gallery - Time Series Analysis
- Template Gallery - Videos
- Template Gallery - Dynamic Labels
Outliers and Anomaly Detection

If you want to train a machine learning model to detect outliers and anomalies in time series data, use this template to label suspicious regions and classify those regions of the time series channels as outliers or anomalies.
Interactive Template Preview
Labeling Configuration
<View>
<TimeSeries name="ts" valueType="url" value="$csv"
sep=","
timeColumn="time"
timeFormat="%Y-%m-%d %H:%M:%S.%f"
timeDisplayFormat="%Y-%m-%d"
overviewChannels="velocity">
<Channel column="velocity"
units="miles/h"
displayFormat=",.1f"
strokeColor="#1f77b4"
legend="Velocity"/>
</TimeSeries>
<TimeSeriesLabels name="label" toName="ts">
<Label value="Region" background="red" />
</TimeSeriesLabels>
<Choices name="region_type" toName="ts"
perRegion="true" required="true">
<Choice value="Outlier"/>
<Choice value="Anomaly"/>
</Choices>
</View>
About the labeling configuration
All labeling configurations must be wrapped in View tags.
Use the TimeSeries object tag to specify the time series data source. The valueType="url"
parameter specifies that the time series data is available as a URL, rather than a file, and the value="$csv"
parameter specifies that the URL is stored in a data key called csv
. The sep=","
parameter specifies that a comma is the data separator, as is standard for a CSV-formatted file. The time parameters specify which column contains the time data, the format of the time data in the file, and how to display the time data on the labeling interface.
<TimeSeries name="ts" valueType="url" value="$csv"
sep=","
timeColumn="time"
timeFormat="%Y-%m-%d %H:%M:%S.%f"
timeDisplayFormat="%Y-%m-%d"
overviewChannels="velocity">
<Channel column="velocity"
units="miles/h"
displayFormat=",.1f"
strokeColor="#1f77b4"
legend="Velocity"/>
</TimeSeries>
The overviewChannels
parameter in the TimeSeries tag specifies the column in the time series data to display on the time series graph as a channel. You can then use the Channel tag and its parameters to provide details about the data, such as the units of the data, the displayFormat
of the channel data using d3 format, the strokeColor
to use when highlighting the channel, and the name of the channel as it should appear in the labeling interface legend.
Use the TimeSeriesLabels control tag to specify the labels to apply to regions in the time series graph:
<TimeSeriesLabels name="label" toName="ts">
<Label value="Region" background="red" />
</TimeSeriesLabels>
Use the Choices control tag to classify whether each specific region is an Outlier or an Anomaly in the time series data:
<Choices name="region_type" toName="ts"
perRegion="true" required="true">
<Choice value="Outlier"/>
<Choice value="Anomaly"/>
</Choices>
Related tags

If you found an error, you can file an issue on GitHub!