templates
- Template Gallery
- Get Started with Templates
Computer Vision
- Semantic Segmentation with Polygons
- Semantic Segmentation with Masks
- Object Detection with Bounding Boxes
- Keypoint Labeling
- Image Captioning
- Optical Character Recognition (OCR)
- Image Classification
- Visual Question Answering
- Object Detection with Ellipses
- Multi-Image Classification
- Multi-page Document Annotation
- Inventory Tracking
- Visual Genome
Natural Language Processing
- Question Answering
- Sentiment Analysis Text Classification
- Named Entity Recognition
- Taxonomy
- Relation Extraction
- Text Summarization
- Machine Translation
Audio/Speech Processing
- Automatic Speech Recognition
- Sound Event Detection
- Automatic Speech Recognition using Segments
- Signal Quality Detection
- Speaker Diarization
- Dialogue Analysis
- Intent Classification
- Audio Classification
- Audio Classification with Segments
- Voice Activity Detection
Conversational AI
- Response Generation
- Response Selection
- Coreference Resolution and Entity Linking
- Slot Filling and Intent Classification
Ranking and Scoring
- Pairwise Regression
- Document Retrieval
- Pairwise Classification
- Content-based Image Retrieval
- Website Rating
- ASR Hypotheses Selection
- Text-to-Image Generation
- Search Page Ranking
Structured Data Parsing
- Freeform Metadata
- PDF Classification
- Tabular Data
- HTML Entity Recognition
- HTML Classification
Time Series Analysis
- Time Series Forecasting
- Change Point Detection
- Activity Recognition
- Signal Quality
- Outliers and Anomaly Detection
- Time Series Classification
- Time Series Labeling
Videos
- Video Classification
- Video Timeline Segmentation
- Video Object Detection and Tracking
Template Galleries
- Template Gallery - Computer Vision
- Template Gallery - Natural Language Processing
- Template Gallery - Audio/Speech Processing
- Template Gallery - Conversational AI
- Template Gallery - Ranking & Scoring
- Template Gallery - Structured Data Parsing
- Template Gallery - Time Series Analysis
- Template Gallery - Videos
- Template Gallery - Dynamic Labels
Relation Extraction

If you need to train a natural language processing model to perform relationship extraction tasks, use this template to create a dataset. This template prompts an annotator to label text spans and identify relationships between the spans. For example, identifying people and organizations, and adding relation arrows and labels to identify who founded an organization.
Labeling Configuration
<View>
<Relations>
<Relation value="org:founded_by"/>
<Relation value="org:founded"/>
</Relations>
<Labels name="label" toName="text">
<Label value="Organization" background="orange"/>
<Label value="Person" background="green"/>
<Label value="Datetime" background="blue"/>
</Labels>
<Text name="text" value="$text"/>
</View>
About the labeling configuration
All labeling configurations must be wrapped in View tags.
Use the Relations control tag to provide labels that can be applied to relations added between text spans:
<Relations>
<Relation value="org:founded_by"/>
<Relation value="org:founded"/>
</Relations>
Use the Labels control tag to specify labels to apply to spans of text:
<Labels name="label" toName="text">
<Label value="Organization" background="orange"/>
<Label value="Person" background="green"/>
<Label value="Datetime" background="blue"/>
</Labels>
Use the Text object tag to display the text on the labeling interface:
<Text name="text" value="$text"/>
Related tags
Related templates
Couldn't find what you were looking for? Please let us know on
Slack
If you found an error, you can file an issue on GitHub!

If you found an error, you can file an issue on GitHub!