templates
- Template Gallery
- Get Started with Templates
Computer Vision
- Semantic Segmentation with Polygons
- Semantic Segmentation with Masks
- Object Detection with Bounding Boxes
- Keypoint Labeling
- Image Captioning
- Optical Character Recognition (OCR)
- Image Classification
- Visual Question Answering
- Object Detection with Ellipses
- Multi-Image Classification
- Multi-page Document Annotation
- Inventory Tracking
- Visual Genome
Natural Language Processing
- Question Answering
- Sentiment Analysis Text Classification
- Named Entity Recognition
- Taxonomy
- Relation Extraction
- Text Summarization
- Machine Translation
Audio/Speech Processing
- Automatic Speech Recognition
- Sound Event Detection
- Automatic Speech Recognition using Segments
- Signal Quality Detection
- Speaker Diarization
- Dialogue Analysis
- Intent Classification
- Audio Classification
- Audio Classification with Segments
- Voice Activity Detection
Conversational AI
- Response Generation
- Response Selection
- Coreference Resolution and Entity Linking
- Slot Filling and Intent Classification
Ranking and Scoring
- Pairwise Regression
- Document Retrieval
- Pairwise Classification
- Content-based Image Retrieval
- Website Rating
- ASR Hypotheses Selection
- Text-to-Image Generation
- Search Page Ranking
Structured Data Parsing
- Freeform Metadata
- PDF Classification
- Tabular Data
- HTML Entity Recognition
- HTML Classification
Time Series Analysis
- Time Series Forecasting
- Change Point Detection
- Activity Recognition
- Signal Quality
- Outliers and Anomaly Detection
- Time Series Classification
- Time Series Labeling
Videos
- Video Classification
- Video Timeline Segmentation
- Video Object Detection and Tracking
Template Galleries
- Template Gallery - Computer Vision
- Template Gallery - Natural Language Processing
- Template Gallery - Audio/Speech Processing
- Template Gallery - Conversational AI
- Template Gallery - Ranking & Scoring
- Template Gallery - Structured Data Parsing
- Template Gallery - Time Series Analysis
- Template Gallery - Videos
- Template Gallery - Dynamic Labels
Time Series Classification

If you need to train a machine learning model to classify time series data, create a dataset using this template. This template provides a way for annotators to classify the entire time series signal graph, and an option to classify specific parts of the graph as types of activity. You can combine these classification methods or use only one.
Interactive Template Preview
Labeling Configuration
<View>
<Header value="Time Series classification"
style="font-weight: normal"/>
<Choices name="pattern" toName="ts">
<Choice value="Accelerating"/>
<Choice value="Slowing"/>
</Choices>
<TimeSeriesLabels name="label" toName="ts">
<Label value="Run"/>
<Label value="Walk"/>
</TimeSeriesLabels>
<TimeSeries name="ts" value="$csv" valueType="url">
<Channel column="first_column"/>
</TimeSeries>
</View>
About the labeling configuration
All labeling configurations must be wrapped in View tags.
You can add a header to provide instructions to the annotator:
<Header value="Time Series classification"
style="font-weight: normal"/>
The style
parameter overrides the default styling of the header to show a normal font weight instead of bold.
The Choices control tag lets annotators classify the entire time series graph:
<Choices name="pattern" toName="ts">
<Choice value="Accelerating"/>
<Choice value="Slowing"/>
</Choices>
The TimeSeriesLabels control tag lets annotators classify specific regions of the time series graph as specific activities:
<TimeSeriesLabels name="label" toName="ts">
<Label value="Run"/>
<Label value="Walk"/>
</TimeSeriesLabels>
The TimeSeries object tag specifies the location of the time series data:
<TimeSeries name="ts" value="$csv" valueType="url">
<Channel column="first_column"/>
</TimeSeries>
Related tags
Related templates

If you found an error, you can file an issue on GitHub!